Search by proteins for their DNA target site: 1. The effect of DNA conformation on protein sliding
نویسندگان
چکیده
The recognition of DNA-binding proteins (DBPs) to their specific site often precedes by a search technique in which proteins slide, hop along the DNA contour or perform inter-segment transfer and 3D diffusion to dissociate and re-associate to distant DNA sites. In this study, we demonstrated that the strength and nature of the non-specific electrostatic interactions, which govern the search dynamics of DBPs, are strongly correlated with the conformation of the DNA. We tuned two structural parameters, namely curvature and the extent of helical twisting in circular DNA. These two factors are mutually independent of each other and can modulate the electrostatic potential through changing the geometry of the circular DNA conformation. The search dynamics for DBPs on circular DNA is therefore markedly different compared with linear B-DNA. Our results suggest that, for a given DBP, the rotation-coupled sliding dynamics is precluded in highly curved DNA (as well as for over-twisted DNA) because of the large electrostatic energy barrier between the inside and outside of the DNA molecule. Under such circumstances, proteins prefer to hop in order to explore interior DNA sites. The change in the balance between sliding and hopping propensities as a function of DNA curvature or twisting may result in different search efficiency and speed.
منابع مشابه
Search by proteins for their DNA target site: 2. The effect of DNA conformation on the dynamics of multidomain proteins
Multidomain transcription factors, which are especially abundant in eukaryotic genomes, are advantageous to accelerate the search kinetics for target site because they can follow the intersegment transfer via the monkey-bar mechanism in which the protein forms a bridged intermediate between two distant DNA regions. Monkey-bar dynamics highly depends on the properties of the multidomain protein ...
متن کاملTarget Location by DNA-Binding Proteins: Effects of Roadblocks and DNA Looping
The model of facilitated diffusion describes how DNA-binding proteins, such as transcription factors (TFs), find their chromosomal targets by combining 3D diffusion through the cytoplasm and 1D sliding along nonspecific DNA sequences. The redundant 1D diffusion near the specific binding site extends the target size and facilitates target location. While this model successfully predicts the kine...
متن کاملFacilitated diffusion framework for transcription factor search with conformational changes.
Cellular responses often require the fast activation or repression of specific genes, which depends on transcription factors (TFs) that have to quickly find the promoters of these genes within a large genome. TFs search for their DNA promoter target by alternating between bulk diffusion and sliding along the DNA, a mechanism known as facilitated diffusion. We study a facilitated diffusion frame...
متن کاملSliding of Proteins Non-specifically Bound to DNA: Brownian Dynamics Studies with Coarse-Grained Protein and DNA Models
DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA mode...
متن کاملHow does a protein reach its binding locus: sliding along DNA chain or not?
In gene expression, various kinds of proteins (such as polymerase or transcription factor) need to bind to specific locus of DNA. Although sophisticated experiments have been done according to this process, it is still not clear how these proteins find their target locus. Are these target-search processes completed mainly by 3-dimensional diffusion in cell space or with the aid of 1-dimensional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014